ECONOMIC ANALYSIS OF A RURAL BASIC ACCESS ROAD PROJECT CASE STUDY: ANDHRA PRADESH, INDIA

Z. Liu, World Bank (2000)

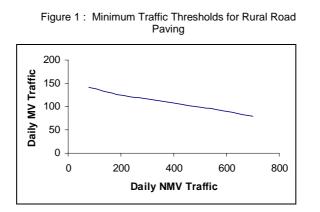
Objectives of the case study

Rural road projects that aim to improve basic road accessibility from villages to markets and social services are expected to yield not only savings in vehicle operating cost (VOC) and road- user travel time cost (TTC), but also substantial social values in the form of broadened socio-economic opportunities for the rural population.

As most rural access roads have very low- traffic volumes, the social values generated from the improvement of basic access are often a more important item of project benefits than the direct road-user cost savings. Due to the difficulties in quantifying the social values in monetary terms, the road cost-benefit analysis methodology that quantifies road-user benefits mainly as VOC and TTC savings is unsuitable for evaluating rural basic access road projects.

Alternative methodologies should be adopted. This paper describes an application of cost-effectiveness analysis (CEA) to supplement cost-benefit analysis (CBA) in the evaluation and selection of road works for financing under a Bank rural road project in the state of Andhra Pradesh, India (World Bank, 2000).

1. PROJECT BACKGROUND AND OVERVIEW OF THE ECONOMIC ANALYSIS


The project area includes three selected poor rural districts, Adilabad, Karimnagar, and Warangal, with a total population of 6.8 million. The project is proposed to improve the rural road network to at least basic, all-weather passable standard. The rural road network totals 15,000km, most of which is in poor condition. Almost 60% of the network are tracks and earth roads, 10% gravel, and 30% water-bound macadam (WBM) roads. Neither tracks nor earth roads are all-weather passable. Both gravel and WBM roads can be all-weather passable, but many of them do not meet the all-weather standard due to broken or missing cross-drainage facilities. The role of economic analysis is to assist the design, prioritization, and selection of road works for financing under the project.

The demand for network investment greatly exceeds the project budget. The key to maximizing investment is focusing on the improvement of a core network that would ensure minimum connectivity for each village to a nearby main road or market center. The core network is identified through a rural road master planning process (World Bank, 2000). Its links that do not meet the basic all-weather standard are identified as candidate roads for improvement, and economic analysis is only applied to these roads.

1

Road works for candidate roads fall into two major categories: (a) basic accessibility works, including upgrading tracks and earth roads to gravel or WBM roads, and all minor and major cross drainage works on existing gravel and WBM roads; and (b) black-topping works on existing earth, gravel, and WBM roads. Since basic accessibility works are considered as a valuable instrument for poverty reduction, they are given first priority. Black-topping, on the other hand, is carried out primarily for economic reasons. When traffic volume (especially motor vehicle traffic) on an unpaved road reaches a certain level, it is more economical to pave the road rather than to keep restoring the unpaved road to all-weather condition. Economic justification is required for all black-topping works.

Both CBA and CEA methodologies are being used for this project. CBA is applied mainly to the black-topping works. A simple spreadsheet CBA program (shown in an attachment to this appendix), based on the conventional road CBA methodology, is first used to determine minimum traffic thresholds. These thresholds are defined as the combination of motor vehicle (MV) and non-motorized vehicle (NMV) traffic levels at which black-topping would be justified at the minimum economic rate of return (ERR) of 12%. They are shown as MV/NMV combinations along the curve in Figure 1. All candidate roads with traffic levels around and above the thresholds are evaluated individually using the spreadsheet CBA program, and the ERRs are estimated. The candidate roads with traffic levels significantly below the thresholds are dropped from the list of black-topping works, but are considered for upgrading to basic access standard and evaluated in the category of basic accessibility works.

CEA is applied to the selection of basic accessibility road works. All roads proposed for basic accessibility work are ranked by a simple cost-effectiveness measure-total population provided with basic access per US\$2,500 equivalent of expenditure. The top ranking least-cost works are then financed, with a maximum of US\$50 equivalent per person served used as a final restrictive measure to ensure cost-effectiveness.

The economic analysis produces a list of basic accessibility road works ranked by cost-effectiveness and a list of black-topping works ranked by ERR. It should be noted that the application of CBA and CEA in this project does not deal with the optimal budget allocation between the two categories of road works. The allocation is decided through a stakeholder participatory process. Based on the budget allocation about 1,700km of rural roads are selected for financing to basic accessibility standard, with a cost-effectiveness ratio ranging from US\$14 to US\$50 outlay per person served. A further total of 1,300km of roads are selected for black-topping. Their ERRs

range from 12 to 90% with an overall ERR of 24%. A total of 2 million people are expected to benefit from the project.

2. VILLAGE AND HOUSEHOLD TRANSPORT SURVEY

The application of CEA for basic accessibility works is supported by an assessment of the likely impact of basic road access on the welfare of rural households. Data was obtained through a small-scale rural household and village transport survey conducted for 40 sampled villages in the project area. For each sampled village, 10 households were randomly selected for the household level survey.

The survey results are summarized in Table 1 below, which reveals significant differences in selected socioeconomic indicators between villages connected with all-weather access road and those unconnected. According to household interviews in the unconnected villages, poor road conditions, seasonal road closures, lack of motorized access, and the high cost of freight delivery are among the major obstacles to village accessibility. Moreover, road closure during the rainy season causes produce spoilage, delay of freight delivery, labor unemployment, and lower school attendance. When asked what impacts are expected from the improvement of roads, most households in both connected and unconnected villages responded with predictions of more seasonal work taken outside villages, higher intensity of cultivation, and expansion of cultivated land. The survey results provided strong empirical evidence to support the social and economic justifications for the provision of basic all-weather access to these villages.

Indicators	Connected	Unconnected
Household income (\$/yr)	700	275
Literacy rate		
Male	51%	40%
Female	35%	22%
Total	43%	32%
Avg. distance traveled for: (km)		
Fertilizer	11	19
Seeds	11	19
Pesticides	9	16
Transport cost (\$/ton-km)		
Fertilizer by bullock cart	0.13	0.33
Seeds by bullock cart	0.10	0.26
Fertilizer by lorry	0.16	0.25
Seeds by lorry	0.08	0.11
Avg. distance to school (km)		
Primary education	0.2	0.2
Secondary education	2.5	18.0

Table 1. A Summary of Rural Household Survey Results: Villages Connected with All-Weather Access Road vs. Villages Unconnected, 1997

3. THE SPREADSHEET CBA PROGRAM

The spreadsheet CBA program, shown in Table 3, is designed specifically for the evaluation of rural road black-topping works. It has a conceptual structure similar to that of the HDM model, but is much simplified for rural road evaluation. The program consists of five panels. The first is used to record the road data and economic input parameters. The value of travel time is estimated using the rural per capita income data from the project area. The annual traffic growth rate is predicted based on the area's population and per capita income trends. The second panel contains engineering unit cost data obtained from the field. The third panel presents the estimated unit VOCs and travel speeds by both road type and vehicle type. The average road surface condition for each type of road in the project area is measured by a range of international roughness index (IRI)¹. The unit VOC data for motor vehicles are obtained from the empirical VOC-IRI relationships estimated for a Bank-financed state highway project in Andhra Pradesh, and extended to cover the worst IRI levels typically found on the rural road network. Average travel speed on each type of road surface is estimated by local engineers based on their field experience. The VOC-IRI relationships for bullock carts and bicycles are estimated using the NMV basic cost data (Table 2) collected from the field and the empirical relationships developed by recent studies in South Asia (PADECO, 1996). The fourth panel calculates savings in VOC and value of travel time (VOT) for the users of each mode of transport. Finally, the bottom panel calculates the economic cost and benefit streams over the project life, the net present value (NPV), and the ERR.

Table 2.	NMV Basic Cost Dat	ta. 1997

	Bullock		
Item	Unit	Cart	Bicycle
Vehicle price	US\$	62.5	30.0
Price of a pair of ox	US\$	312.5	n.a.
Annual cost of feeding the ox	US\$/pair	150.0	n.a.
Annualized maintenance cost	US\$	75.0	5.0
Vehicle depreciation	US\$/yr.	12.5	5.0 (a)
Annual average usage	km	2,400	1,000
Average year of life	years	5	10
Average VOC per km	US\$	0.13	0.01

Note: (a) annual depreciation for the first 3 years.

4. LESSONS LEARNED

1. Where the provision of basic road access is mainly for social equity reasons, cost-effectiveness analysis can be used to evaluate or highlight the impact of the project, and economic efficiency can be considered implicitly through an emphasis on the least-cost design to achieve the project objectives.

4

¹ While the appropriateness of using IRI for rural road project evaluation remains debatable, for this particular project, it is judged appropriate by the project team, given the substantial differences in roughness found among different types of rural road and the relative uniformity within each type of rural road in the area.

- 2. The economic analysis described here requires systematic data collection. This particular experience may not be transferable to other rural road projects. However, one important lesson learned from this experience is that data collection at low cost can be possible with the active participation of the client in the preparation of the project.
- 3. Where systematic data do not exist or are costly to collect, effort should be made to at least establish a transport/poverty profile through a small-scale household survey, and to collect traffic data on the proposed rural roads.
- 4. While the methods used in this project help ensure the application of economic criteria, they do not deal with the optimal allocation of budget between the two categories of road works. This allocation should be decided through a participatory process.

KEY REFERENCES

Liu, Z. (2000). Economic Analysis of a Rural Basic Access Road Project: The Case of Andhra Pradesh, India. World Bank Infrastructure Note RT-5. Washington D.C: World Bank

PADECO (1996), Non-Motorized Transport (NMT) Modeling in HDM-4, Draft Final Report for Transport Division of the World Bank. Washington D.C: World Bank

World Bank (2000), Infrastructure Notes Transport No RT –4, January 2000

World Bank (1996), Bangladesh: Second Rural Roads and Markets Improvement and Maintenance Project: Project Implementation Document No. 15: Economic Appraisal of FRB Roads, South Asia Regional Office, World Bank

5

Current Tod type (enter 0 for earth, 1 for gravel, 2 for WBM) 2 No. of minor CD/km: Major CD (m/km): Value of travel time (US\$/km) 0.06 Annual traffic growth rate Standard Conversion Factor Capital income growth 3% Cancial Cost (000 US\$/km) Financial Economic Financial Formation 5.00 4.50 Earth 0.55 Gravel (when available on site) 5.00 4.50 Gravel 0.88 0 Minor CD (000 US\$/each) 5.00 4.50 Blacktop 0.33 0 Minor CD (000 US\$/m) 3.75 3.38 Travel Speed by Road Type (Min/h Earth Gravel WBM Buses 0.170 0.123 0.118 0.100 2.4 1.7 1.7 Travels Speed by Road Type (Min/h Earth Gravel 0.343 0.280 0.245 2.4 1.7 1.7 Buses 0.170 0.123 0.118 0.100 2.4 1.7 1.7 Tracks 0.243 0.280 0.280 0.240 1.7 1.7 <th></th>			
Road length (km): 15 Population served: Current road type (enter 0 for earth, 1 for gravel, 2 for WBM) 2 Major CD (m/km): Value of travel time (US\$/km) 0.6 Annual traffic growth rate Annual per capital Cost ('000 US\$/km) Annual traffic growth rate Annual traffic growth rate Formation 5.00 4.50 Earth 0.55 Gravel (when available on site) 5.00 4.50 Gravel 0.68 C WBM (each layer) 6.25 5.63 WBM 0.88 C Blacktop 7.50 6.75 Blacktop 0.93 C Major CD ('000 US\$/each) 3.75 3.38 Travel Speed by Road Type (Min./k Buses 0.303 0.250 0.245 0.225 2.4 1.7 1.7 Gravel (WHA RI=-57 RIE-141 RIE-94-11 RIE-97 RIE-97 RIE-141 RIE-94-11 RIE-97	•		
Current and type (enter 0 for earth, 1 for gravel, 2 for WBM) 2 No. of minor CD/km: Major CD (m/km): Value of travel time (US\$/km) 0.06 Annual traffic growth rate Standard Conversion Factor Capital Cost ('000 US\$/km) Annual traffic growth rate Financial Economic Annual traffic growth rate Standard Conversion Factor Formation 5.00 4.50 Earth 0.55 0 Gravel (when available on site) 5.00 4.50 Gravel 0.88 0 WBM (each layer) 6.25 5.63 WBM 0.88 0 Minor CD ('000 US\$/each) 5.00 4.50 Harth Gravel WBM Vehicle Type IR=14-18 IR=9-11	L101		
earth, 1 for gravel, 2 for WBM) 2 Major CD (mkm): Yalue of travel time (US\$/hr) 0.06 Annual per capital income growth 3% Capital Cost (000 US\$/km) Annualized Maint Cost ('000 US\$/km) Financial Economic Financial Economic Financial Economic Formation 5.00 4.50 Earth 0.55 C G Gravel (when available on site) 5.00 4.50 Gravel 0.68 C Blacktop 7.50 6.75 Blacktop 0.33 C Minor CD ('000 US\$/each) 5.00 4.50 Major CD ('000 US\$/m) Earth Gravel WBM BT Earth Gravel WBM T Buses 0.303 0.250 0.245 0.225 2.4 1.7 1.7 Tractor Trailors 0.250 0.225 0.200 1.18 0.100 2.4 1.7 1.7 Tractor Trailors 0.250 0.225 0.200 0.150 3.0 2.0 2.0	12,000		
Value of travel time (US\$/hr) 0.06 Annual per capital income growth Annual signature Standard Conversion Factor Capital Cost ('000 US\$/km) Annualized Maint Cost ('000 US\$/km) Annualized Maint Cost ('000 US\$/km) Financial Economic Financial Eco Formation 5.00 4.50 Earth 0.55 C Gravel (when available on site) 5.00 4.50 Gravel 0.68 C WBM (each layer) 6.25 5.63 WBM 0.88 C Minor CD ('000 US\$/each) 5.00 4.50 Gravel (WBM Travel Speed by Road Type (Min/h Vehicle Type IR=14-18 IR=9-11 IR=5-7 IR=14-18 IR=9-11 IR=9	0.5		
Annual per capital income growth 3% Standard Conversion Factor Capital Cost (1000 US\$/km) Financial Economic Annualized Maint Cost (1000 US\$/kg) Financial Economic Annualized Maint Cost (1000 US\$/kg) Financial Economic Gravel (when available on site) 5.00 4.50 Earth 0.58 0 WBM (each layer) 6.25 5.63 WBM 0.88 0 Major CD (1000 US\$/end) 3.75 3.38 Travel Speed by Road Type (MIn /h Earth Gravel WBM Vehicle Type IRI-1418 IRI-9-11 I	1.0 5%		
Capital Cost (1000 US\$/km) Annualized Maint Cost (1000 US\$/km) Formation 5.00 4.50 Earth 0.55 C Formation 5.00 4.50 Gravel (When available on site) 5.00 4.50 Gravel 0.68 C WBM (each layer) 6.25 5.63 WBM 0.88 C Blacktop 7.50 6.75 Blacktop 0.93 C Minor CD (1000 US\$/each) 5.00 4.50 Travel Speed by Road Type (Min/h Earth Gravel WBM BT Firanel Parel RI=14.18 RI=9-11	0.90		
Financial Economic Financial Economic Financial Economic Formation 5.00 4.50 Earth 0.55 0.68 0.69 0.93 0.66 0.93 0.66 0.93 0.66 0.93 0.66 0.93 0.66 0.93 0.66 0.450 0.255 2.4 1.7 1.7 1.7 0.72 0.123 0.118 0.100 2.4 1.7 1.7 1.7 0.425 0.260 0.240 2.4 1.7 1.7 1.7 1.7 1.7 0.123 0.118 0.100 2.4 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7			
Formation 5.00 4.50 Earth 0.55 0 Gravel (when available on site) 5.00 4.50 Gravel 0.68 0 WBM (each layer) 6.25 5.63 WBM 0.88 0 Blacktop 7.50 6.75 Blacktop 0.93 0 Minor CD (000 US\$(each) 5.00 4.50 Hight CD (000 US\$(m)) 3.75 3.38 Vehicle Type IR=14-18 Ris=9-11 IR=1-9-11 IR=1-9-11<			
Gravel (when available on site) 5.00 4.50 Gravel 0.68 0.68 WBM (each layer) 6.25 5.63 WBM 0.88 0.93 Minor CD (000 US\$(each) 5.00 4.50 Blacktop 0.93 0.93 Minor CD (000 US\$(m) 3.75 3.38 Travel Speed by Road Type (MS\$/km) Travel Speed by Road Type (Min/k Earth Gravel WBM BT Travel Speed by Road Type (Min/k Earth Gravel WBM Buses 0.303 0.250 0.245 0.24 1.7 1.7 Buses 0.170 0.123 0.118 0.100 2.4 1.7 1.7 Trackor Trailors 0.250 0.250 0.240 2.4 1.7 1.7 Trackor Trailors 0.250 0.225 0.200 0.150 3.0 2.0 2.0 LCV/Tempo 0.170 0.123 0.118 0.100 2.4 1.7 1.7 Bulckok carts 0.047 0.053 0.050 0.38).50		
WBM (each layer) 6.25 5.63 WBM 0.88 0.93 Blacktop 7.50 6.75 Blacktop 0.93 0 Minor CD (000 US\$/each) 5.00 4.50 Major CD ('000 US\$/m) 3.75 3.38 Travel Speed by Road Type (Min/F Earth Gravel WBM BT Earth Gravel WBM Buses 0.303 0.250 0.245 0.225 2.4 1.7 1.7 Mini buses 0.170 0.123 0.118 0.100 2.4 1.7 1.7 Tracks 0.343 0.280 0.268 0.240 2.4 1.7 1.7 Tracks 0.043 0.280 0.268 0.240 2.4 1.7 1.7 Tracks 0.075 0.063 0.038 0.025 2.4 1.7 1.7 Three wheelers 0.063 0.038 0.025 2.4 1.7 1.7 Bullock carts 0.147 0.129 0.118 <t< td=""><td>).61</td></t<>).61		
Blacktop 7.50 6.75 Blacktop 0.93 0 Mior CD ('000 US\$/each) 5.00 4.50 3.38 Image: CD ('000 US\$/m) Image: CD ('000 US\$/m)).79		
Major CD (000 US\$/m) 3.75 3.38 Travel Speed by Road Type (US\$/km) Earth Gravel WBM BT Wehicle Type Travel Speed by Road Type (Min/k Earth Gravel WBM Buses 0.303 0.250 0.245 0.225 2.4 1.7 1.7 Mini buses 0.170 0.123 0.118 0.100 2.4 1.7 1.7 Cars/Jeeps 0.170 0.123 0.118 0.100 2.4 1.7 1.7 Cars/Jeeps 0.170 0.123 0.118 0.100 2.4 1.7 1.7 Tracks 0.343 0.286 0.246 0.244 1.7 1.7 Tracks 0.343 0.286 0.268 0.244 1.7 1.7 Trew wheelers 0.075 0.063 0.038 0.025 2.4 1.7 1.7 Bullock carts 0.147 0.129 0.118 0.115 20.0 15.0 15.0 15.0 Buses 20 35 0.25 0.23 1.70 1.20 </td <td>).83</td>).83		
Unit VOC by Road Type (US\$/km) Earth Travel Speed by Road Type (Min./k Earth Travel Speed by Road Type (Min./k Earth Vehicle Type IRI=14-18 IRI=9-11 IRI=9-11 IRI=14-18 IRI=9-11 IRI=14-18 IRI=9-11 IRI=14-18 IRI=9-11 IRI=14-18 IRI=9-11 IRI=9-1			
Earth Gravel WBM BT Earth Gravel WBM Vehicle Type IR=14118 IR=9-11 IR=5-7 IR=14-18 IR=9-11 IR			
Vehicle Type IRL=14-18 IRL=9-11 IRL=9-11 IRL=5-7 IRL=14-18 IRL=9-11	:m)		
Buses 0.303 0.250 0.245 0.225 2.4 1.7 1.7 Mini buses 0.170 0.123 0.118 0.100 2.4 1.7 1.7 Cars/Jeeps 0.170 0.123 0.118 0.100 2.4 1.7 1.7 Cars/Jeeps 0.343 0.280 0.268 0.240 2.4 1.7 1.7 Tracks 0.343 0.280 0.268 0.240 2.4 1.7 1.7 Tracks 0.250 0.225 0.200 0.150 3.0 2.0 2.0 LCV/Tempo 0.170 0.123 0.118 0.100 2.4 1.7 1.7 Three wheelers 0.063 0.038 0.038 0.025 2.4 1.7 1.7 Bulcock carts 0.147 0.129 0.118 0.115 20.0 15.0 15.0 Pedestrains n.a. n.a. n.a. n.a. n.a. 1.70 1.20 0.40 0.27	BT		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	l=5-7		
Cars/Jeeps 0.170 0.123 0.118 0.100 2.4 1.7 1.7 Trucks 0.343 0.280 0.268 0.240 2.4 1.7 1.7 Tractor Trailors 0.250 0.225 0.200 0.150 3.0 2.0 2.0 LCV/Tempo 0.170 0.123 0.118 0.100 2.4 1.7 1.7 Three wheelers 0.075 0.063 0.038 0.038 2.4 1.7 1.7 Bullock carts 0.147 0.129 0.118 0.115 20.0 15.0 15.0 15.0 Bicycles 0.010 0.008 0.008 0.006 7.5 7.0 7.0 Pedestrains n.a. n.a. n.a. n.a. 1.70 16.0 16.0 16 Vehicle Type Traftic Occup. W/o.Proj w.Proj. W/o.Proj w.Proj. VOC VOC V 0.40 0 0.170 1.20 0.40 0.20 </td <td>1.2</td>	1.2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.2 1.2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.2 1.2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.2		
Pedestrains n.a. n.a. n.a. n.a. n.a. 17.0 16.0 16.0 16.0 Vehicle Type Traffic Occup. w/o.Proj w.Proj. w/o.Proj w.Proj. VOC	15.0		
Vehicle Type Base yr. Avg. Veh. $VOC(US\$/km)$ $Wo.Proj. Wo.Proj. Wo.Proj. Wo.Proj. Wo.Proj. Wo.Proj. Wo.Proj. Wo.Proj. VOC $	6.5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15.5		
Buses 20 35 0.25 0.23 1.70 1.20 0.40 0.40 Mini buses 16 10 0.12 0.10 1.70 1.20 0.28 0.23 Cars/Jeeps 40 4 0.12 0.10 1.70 1.20 0.28 0.27 Tracks 24 0 0.27 0.24 1.70 1.20 0.66 0.70	/km)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/OT		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.36		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.08		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.08		
LCV/Tempo 37 1 0.12 0.10 1.70 1.20 0.65 0.05 Three wheelers 32 3 0.05 0.04 1.70 1.20 0.40 0.05 Two wheelers 68 1.5 0.04 0.03 1.70 1.20 0.40 0.05 Bullock carts 60 1.5 0.12 0.12 15.00 15.00 0.15 0.15 Bicycles 320 1 0.01 0.01 7.00 6.50 0.56 0.065 Pedestrians 680 1 n.a. n.a. 16.00 15.50 n.a. 0.01 MVs (2 2w = 1 MV) 225 Annual sum (325 days/year) = 1868 4 NMVs 380).00).06		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$).08		
Two wheelers 68 1.5 0.04 0.03 1.70 1.20 0.85 0.05 Bullock carts 60 1.5 0.12 0.12 15.00 15.00 0.15 0.05 Bicycles 320 1 0.01 0.01 7.00 6.50 0.56 0.57 20.55 200 56 0.51 25 0.55 25 2001 5% 0.55 55 25	0.05		
Bullock carts 60 1.5 0.12 0.12 15.00 15.00 0.15 0.01 Bicycles 320 1 0.01 0.01 7.00 6.50 0.56 52 0.56	0.05		
Pedestrians 680 1 n.a. n.a. 16.00 15.50 n.a. 0 MVs (2 2w = 1 MV) 225 Annual sum (325 days/year) = 1868 1 1868 1 <td>0.00</td>	0.00		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $).17		
NMVs 380 Traffic Capital Maint. VOC VOT Year Growth Cost Cost Savings Bain 1998 5% 20.25 0.045 1.87 0.40 -1 1999 5% 0.045 1.96 0.43 2 2000 5% 0.045 2.06 0.47 2 2001 5% 0.045 2.16 0.51 2 2002 5% 0.045 2.27 0.55 2 2003 5% 0.045 2.38 0.59 2).35		
Traffic Capital Maint. (All in thousand US\$). Year Growth Cost Cost VOC VOT 1998 5% 20.25 0.045 1.87 0.40 -1 1999 5% 0.045 1.96 0.43 22 2000 5% 0.045 2.16 0.51 22 2001 5% 0.045 2.16 0.51 22 2002 5% 0.045 2.27 0.55 22 2003 5% 0.045 2.38 0.59 22 200 200 5% 0.045 2.27 0.55 22 2003 5% 0.045 2.38 0.59 22 2003 5% 0.045 2.38 0.59 22 2003 2003 5% 0.045 2.38 0.59 22 2003 2005 2.06 0.45 2.38 0.59 22 2003 2005 2.06 0.45 2.38 0.59 22 2003 2.06 <t< td=""><td>400</td></t<>	400		
Traffic Capital Maint. VOC VOT Year Growth Cost Cost Savings Savings Be 1998 5% 20.25 0.045 1.87 0.40 -1 1999 5% 0.045 1.96 0.43 22 2000 5% 0.045 2.06 0.47 22 2001 5% 0.045 2.16 0.51 22 2002 5% 0.045 2.27 0.55 22 2003 5% 0.045 2.38 0.59 22			
Year Growth Cost Cost Savings Back 1998 5% 20.25 0.045 1.87 0.40 -1 1999 5% 0.045 1.96 0.43 22 2000 5% 0.045 2.06 0.47 22 2001 5% 0.045 2.16 0.51 22 2002 5% 0.045 2.27 0.55 22 2003 5% 0.045 2.38 0.59 22			
1998 5% 20.25 0.045 1.87 0.40 -1 1999 5% 0.045 1.96 0.43 2 2000 5% 0.045 2.06 0.47 2 2001 5% 0.045 2.16 0.51 2 2002 5% 0.045 2.27 0.55 2 2003 5% 0.045 2.38 0.59 2	Net		
1999 5% 0.045 1.96 0.43 2 2000 5% 0.045 2.06 0.47 2 2001 5% 0.045 2.16 0.51 2 2002 5% 0.045 2.27 0.55 2 2003 5% 0.045 2.38 0.59 2	enefit 8.03		
2000 5% 0.045 2.06 0.47 2 2001 5% 0.045 2.16 0.51 2 2002 5% 0.045 2.27 0.55 2 2003 5% 0.045 2.38 0.59 2	0.03 2.35		
2001 5% 0.045 2.16 0.51 22 2002 5% 0.045 2.27 0.55 22 2003 5% 0.045 2.38 0.59 22	2.48		
2002 5% 0.045 2.27 0.55 22 2003 5% 0.045 2.38 0.59 22	2.62		
2003 5% 0.045 2.38 0.59 2	2.77		
	2.93		
	3.10		
	3.28		
	3.29		
	3.66		
	3.87		
	4.10 1.33		
	4.33 4.59		
	4.85		
	5.13		
NPV).81		
ERR 12	2.8%		

Table 3: Cost-Benefit Analysis Program for Rural Road Paving Project